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How do I pwn?

● Take a binary
● Find a vulnerability and inputs which trigger 

that vulnerability
● Create a payload which exploits the 

vulnerability
● ???
● proft responsible disclosure
● Vendor doesn’t patch it after several months
● proft



  

Why can’t I pwn?

● Vulnerability discovery is a slow and 
tedious process

● Large size of binaries
● Vulnerability → Exploit can be 

nontrivial 
– e.g. restrictions on input, insufcient space for 

shellcode, etc.
● Patching of vulnerabilities varies in 

difculty



  



  



  

DARPA Cyber Grand Challenge 
(2014-)2016

● Automatic exploitation and patching
● Custom pwnables written for DECREE OS
● DECREE caveats and rant
● Winners:

– 1st: Mayhem (CMU)
– 2nd: Xandra (TECHx)
– 3rd: Mechanical Phish (UCSB)

● Only Mechanical Phish (angr) open-
sourced :(



  

Mayhem in CGC

● Challenges modeled after real exploits
– Morris Worm (bufer overfow)
– Stuxnet LNK (of by one) (CVE-2010-2568)
– Crackaddr (bufer overfow) (CVE-2002-1337)
– Heartbleed (leak of sensitive data) (CVE-2014-0160)

● Patching
– Return pointer encryption
– Protection of indirect calls/jmps
– Extended malloc allocations
– Manual ASLR
– Cleaning of uninitialized space

● For DEFCON challenge that was broadcasted at 14:10:25 
UTC, hardened binary created at 14:11:08 UTC (43 seconds)



  

Symbolic Execution Primer



  

Toy Program



  

Concrete Execution (testing)

● Concrete Store:
– x = 4

– y = 4



  

Concrete Execution (testing)

● Concrete Store:
– x = 4

– y = 4

– t = 0



  

Concrete Execution (testing)

● Concrete Store:
– x = 4

– y = 4

– t = 4



  

Concrete Execution (testing)

● Concrete Store:
– x = 4

– y = 4

– t = 4

● 4 < 4 is false, 
quik mafs



  

Concrete Execution (testing)

● Concrete Store:
– x = 4

– y = 4

– t = 4

● 4 < 4 is false, 
assertion 
unreached



  

Static Symbolic Execution

● Symbolic Store:
– x = X

– y = Y



  

Static Symbolic Execution

● Symbolic Store:
– x = X

– y = Y

– t = 0



  

Static Symbolic Execution

● Symbolic Store:
– x = X

– y = Y

– t = ite(X<Y,X,Y)



  

Static Symbolic Execution

● Symbolic Store:
– x = X

– y = Y

– t = ite(X<Y,X,Y)

● Assert condition: 
ite(X<Y,X,Y)<X



  

Static Symbolic Execution

● Symbolic Store:
– x = X

– y = Y

– t = ite(X<Y,X,Y)

● Assert condition: 
ite(X<Y,X,Y)<X

● Throw into solver 
– assert not hit



  

Dynamic Symbolic Execution

● Symbolic Store:
– x = X

– y = Y

– T = 0

● Case split on 
conditional



  

Dynamic Symbolic Execution

● Branch 1:  X > Y
● Symbolic Store:

– x = X

– y = Y

– t = X 

● Assert condition: 
X<X

● Assert not hit



  

Dynamic Symbolic Execution

● Branch 2:  !(X > 
Y)

● Symbolic Store:
– x = X

– y = Y

– t = Y 

● Assert condition: 
Y<Y

● Assert not hit



  

Actually Exploiting Stuf
(kindof maybe)



  

AEG in Four Easy Steps

● Symbolically execute program 
(warning! slow!)

● Detect violation of safety property
● Check if exploitable
● Generate exploit (using template 

shellcode)



  

Case Study: Crackaddr Variant

● CVE2002-1337
– Sendmail 5.79 to 8.12.7
– Remote execution via bufer overfow in 

‘crackaddr’ function of headers.c
● CGC Challenge (Halvar Flake (2011))

– Extracted core of bug (50 LOC vs. 247)
– ‘Tool should automatically show vulnerable 

version has a bug and the fxed version is safe’



  

Case Study: Crackaddr Variant



  

its a state machine woaw

● 201 loop iterations to trigger bug 
● 10 diferent paths through loop
● 5201 (approx 2664) paths



  

Case Study: Unintended Solution



  

Case Study: Unintended Solution

● Solved by Mayhem (~1h 45m)



  

oh no

● Symbolic execution sufers from 
scaling issues

● Real world nuisances like libraries, 
device drivers, operating systems
– On top of standard binary analysis issues (e.g. 

CFG recovery)
● A lot of efort has gone into making 

symbolic execution of programs more 
viable



  

help! i’m too slow!

● Handling path explosion
– Heuristic preconditions on state space

● Known Length (automatic – max)
● Known Prefx (manual, e.g. HTTP GET)
● Concolic Execution (manual, crashing input)

– Heuristic path prioritization
● Buggy-path-frst
● Loop Exhaustion



  

help! i’m too slow!

● Handling state space explosion
– ‘Driller’ architecture (Mechanical Phish)

● Dynamic Symbolic Execution with fuzzing
● Each shores up weaknesses of the other

– Veritesting (CMU Cylab)
● Alternate between dynamic and static symbolic 

execution
● Balances between the solver and the symbolic 

execution engine



  

help! the real world exists!

● Handling the real world
– Actually symbolically execute into 

kernel/library
● (probably going to fail)

– Function/syscall hooking
● Unconstrained symbolic values
● Model efects of function call on symbolic state
● Tedious and possibly error prone



  

help! the real world exists!

● Handling the real world
– Indirect jumps/calls

● Resolve all jump targets
● Randomly concretize

– S2E framework (‘in-vivo’ execution)
● Switch between concrete and symbolic execution
● Concretize e.g. syscall inputs, make symbolic after 

return



  

Some Remarks

● AEG is a relatively new and 
developing feld

● Techniques have been around for 
decades

● Practical implementations of AEG are 
still very much in development

● Real world is hard
● Formal methods is (are?) cool



  

Useful Readings

● Symbolic Execution Survey
– https://github.com/season-lab/survey-symbolic-e

xecution
● Decision Procedures, SMT solving

– The Calculus of Computation (Bradley, Manna)
– Logic in Computer Science (Huth)

● Theorem Proving/Provers
– CPDT (Chlipala), DeepSpec project
– CompCert, seL4
– Coq, Isabelle/HOL, Twelf, Idris, etc. etc.

https://github.com/season-lab/survey-symbolic-execution
https://github.com/season-lab/survey-symbolic-execution


  

COOL VIDEO



  

Cool video

● D:\Documents\AEG Exploits Demo.mp4

file:///media/jarsp/Data/Documents/AEG%20Exploits%20Demo.mp4


  

thanken you

qeustions?
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