

AEG: Automatic Exploit Generation

Benjamin Lim
(with some content shamelessly

stolen from)
Wong Wai Tuck

How do I pwn?

● Take a binary
● Find a vulnerability and inputs which trigger

that vulnerability
● Create a payload which exploits the

vulnerability
● ???
● proft responsible disclosure
● Vendor doesn’t patch it after several months
● proft

Why can’t I pwn?

● Vulnerability discovery is a slow and
tedious process

● Large size of binaries
● Vulnerability → Exploit can be

nontrivial
– e.g. restrictions on input, insufcient space for

shellcode, etc.
● Patching of vulnerabilities varies in

difculty

DARPA Cyber Grand Challenge
(2014-)2016

● Automatic exploitation and patching
● Custom pwnables written for DECREE OS
● DECREE caveats and rant
● Winners:

– 1st: Mayhem (CMU)
– 2nd: Xandra (TECHx)
– 3rd: Mechanical Phish (UCSB)

● Only Mechanical Phish (angr) open-
sourced :(

Mayhem in CGC

● Challenges modeled after real exploits
– Morris Worm (bufer overfow)
– Stuxnet LNK (of by one) (CVE-2010-2568)
– Crackaddr (bufer overfow) (CVE-2002-1337)
– Heartbleed (leak of sensitive data) (CVE-2014-0160)

● Patching
– Return pointer encryption
– Protection of indirect calls/jmps
– Extended malloc allocations
– Manual ASLR
– Cleaning of uninitialized space

● For DEFCON challenge that was broadcasted at 14:10:25
UTC, hardened binary created at 14:11:08 UTC (43 seconds)

Symbolic Execution Primer

Toy Program

Concrete Execution (testing)

● Concrete Store:
– x = 4

– y = 4

Concrete Execution (testing)

● Concrete Store:
– x = 4

– y = 4

– t = 0

Concrete Execution (testing)

● Concrete Store:
– x = 4

– y = 4

– t = 4

Concrete Execution (testing)

● Concrete Store:
– x = 4

– y = 4

– t = 4

● 4 < 4 is false,
quik mafs

Concrete Execution (testing)

● Concrete Store:
– x = 4

– y = 4

– t = 4

● 4 < 4 is false,
assertion
unreached

Static Symbolic Execution

● Symbolic Store:
– x = X

– y = Y

Static Symbolic Execution

● Symbolic Store:
– x = X

– y = Y

– t = 0

Static Symbolic Execution

● Symbolic Store:
– x = X

– y = Y

– t = ite(X<Y,X,Y)

Static Symbolic Execution

● Symbolic Store:
– x = X

– y = Y

– t = ite(X<Y,X,Y)

● Assert condition:
ite(X<Y,X,Y)<X

Static Symbolic Execution

● Symbolic Store:
– x = X

– y = Y

– t = ite(X<Y,X,Y)

● Assert condition:
ite(X<Y,X,Y)<X

● Throw into solver
– assert not hit

Dynamic Symbolic Execution

● Symbolic Store:
– x = X

– y = Y

– T = 0

● Case split on
conditional

Dynamic Symbolic Execution

● Branch 1: X > Y
● Symbolic Store:

– x = X

– y = Y

– t = X

● Assert condition:
X<X

● Assert not hit

Dynamic Symbolic Execution

● Branch 2: !(X >
Y)

● Symbolic Store:
– x = X

– y = Y

– t = Y

● Assert condition:
Y<Y

● Assert not hit

Actually Exploiting Stuf
(kindof maybe)

AEG in Four Easy Steps

● Symbolically execute program
(warning! slow!)

● Detect violation of safety property
● Check if exploitable
● Generate exploit (using template

shellcode)

Case Study: Crackaddr Variant

● CVE2002-1337
– Sendmail 5.79 to 8.12.7
– Remote execution via bufer overfow in

‘crackaddr’ function of headers.c
● CGC Challenge (Halvar Flake (2011))

– Extracted core of bug (50 LOC vs. 247)
– ‘Tool should automatically show vulnerable

version has a bug and the fxed version is safe’

Case Study: Crackaddr Variant

its a state machine woaw

● 201 loop iterations to trigger bug
● 10 diferent paths through loop
● 5201 (approx 2664) paths

Case Study: Unintended Solution

Case Study: Unintended Solution

● Solved by Mayhem (~1h 45m)

oh no

● Symbolic execution sufers from
scaling issues

● Real world nuisances like libraries,
device drivers, operating systems
– On top of standard binary analysis issues (e.g.

CFG recovery)
● A lot of efort has gone into making

symbolic execution of programs more
viable

help! i’m too slow!

● Handling path explosion
– Heuristic preconditions on state space

● Known Length (automatic – max)
● Known Prefx (manual, e.g. HTTP GET)
● Concolic Execution (manual, crashing input)

– Heuristic path prioritization
● Buggy-path-frst
● Loop Exhaustion

help! i’m too slow!

● Handling state space explosion
– ‘Driller’ architecture (Mechanical Phish)

● Dynamic Symbolic Execution with fuzzing
● Each shores up weaknesses of the other

– Veritesting (CMU Cylab)
● Alternate between dynamic and static symbolic

execution
● Balances between the solver and the symbolic

execution engine

help! the real world exists!

● Handling the real world
– Actually symbolically execute into

kernel/library
● (probably going to fail)

– Function/syscall hooking
● Unconstrained symbolic values
● Model efects of function call on symbolic state
● Tedious and possibly error prone

help! the real world exists!

● Handling the real world
– Indirect jumps/calls

● Resolve all jump targets
● Randomly concretize

– S2E framework (‘in-vivo’ execution)
● Switch between concrete and symbolic execution
● Concretize e.g. syscall inputs, make symbolic after

return

Some Remarks

● AEG is a relatively new and
developing feld

● Techniques have been around for
decades

● Practical implementations of AEG are
still very much in development

● Real world is hard
● Formal methods is (are?) cool

Useful Readings

● Symbolic Execution Survey
– https://github.com/season-lab/survey-symbolic-e

xecution
● Decision Procedures, SMT solving

– The Calculus of Computation (Bradley, Manna)
– Logic in Computer Science (Huth)

● Theorem Proving/Provers
– CPDT (Chlipala), DeepSpec project
– CompCert, seL4
– Coq, Isabelle/HOL, Twelf, Idris, etc. etc.

https://github.com/season-lab/survey-symbolic-execution
https://github.com/season-lab/survey-symbolic-execution

COOL VIDEO

Cool video

● D:\Documents\AEG Exploits Demo.mp4

file:///media/jarsp/Data/Documents/AEG%20Exploits%20Demo.mp4

thanken you

qeustions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

